
  

  

Abstract—Many quadruped robots have been developed to 

imitate their biological counterparts, several of which show 

excellent performance. However, the biological neural control 

mechanisms responsible for self-organized adaptive quadruped 

locomotion remain elusive. By drawing lessons from biological 

findings and using an artificial neural approach, we simulated a 

mammal-like quadruped robot and used it as our simulation 

platform to investigate and develop neural control mechanisms. 

In this study, we proposed an adaptive neural control network 

that can autonomously generate self-organized emergent 

locomotion with adaptability for the robot. The control network 

consists of three main components: Decoupled neural central 

pattern generator circuits (one for each leg), sensory feedback 

adaptation with dual-rate learning, and multiple neural reflex 

mechanisms. Simulation results show that the robot can 

perform quadruped-like gaits in a self-organized manner and 

adapt its gait to negotiate an obstacle. In addition, this work also 

suggests that the tight combination of the body-environment 

interaction and adaptive neural control, guided by sensory 

feedback adaptation and neural reflexes, is a powerful approach 

to better understand and solve self-organized adaptive 

coordination problems in quadruped locomotion. 

Keywords: Adaptive neural control, Reflexes, Central 

pattern generator, Self-organized locomotion, Quadruped. 

I. INTRODUCTION 

Quadruped animals exhibit versatile locomotion patterns 
in response to the walking speed and environmental situations 
[1]. Many quadruped robots have been developed to imitate 
their biological counterparts. Several of them exhibit excellent 
performance [2-6]. For example, Boston Dynamics (BD) has 
released several impressively versatile quadruped robots since 
2004 and 2007. The robots include BigDog, LS3, Wildcat, 
Spot and SpotMini1 . These robots employ an engineering 
control approach based on state machine, dynamic balancing, 
foot trajectory planning and virtual leg methods [7] with 
predefined leg coordination. Although the control approach 
allows the robot to deal with terrain changes through terrain 
sensing and posture control [3], it is difficult to relate the 
approach to its biological counterpart as well as to better 
understand and solve self-organized adaptive coordination 
problems in quadruped locomotion. 

In contrast to the engineering control approach, biological 
findings have revealed that the locomotion of quadruped 
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animals is basically generated by a combination of central 
pattern generators (CPGs), sensory feedback, and reflexes [8, 
9]. Inspired by the findings, various bio-inspired control 
approaches of quadruped robots have been developed [10-14]. 
For example, Fukuoka and Kimura introduced a control 
network with four CPGs and reflex mechanisms to allow the 
robot Tekken to walk on uneven terrain [10]. Nevertheless, 
this bio-inspired CPG- and reflex-based control method 
requires preprogrammed phase relationships between CPGs. 
Thereby, it lacks in flexibility, independency, and 
self-organization properties. 

To overcome the problems, Owaki et al. presented alternative 
approach based on decoupled simple CPGs with continuous 
phase modulation [12]. Instead of predefining the CPG phase 
relationships, they modulated the CPG phases with respect to 
the magnitude of leg load sensing. This results in flexibility 
and adaptability to deal with the changes of weight 
distribution and locomotion speed of a quadruped robot. 
While this method can generate self-organized locomotion, 
the load sensing feedback gain, which is an important factor to 
properly modulate the CPG phases and, thereby, achieve 
stable locomotion, has been manually adjusted. Furthermore, 
the approach has not been applied or investigated on gait 
adaptation to negotiate an obstacle, which is a specific 
practical situation for robots when walking in a natural 
environment. Although some researches have proposed reflex 
mechanisms for negotiating obstacles [2, 3, 13, 14], e.g. 
Focchi et al. (2013) presented reflex generation for obstacle 
negotiation through a kinematic modification of the reference 
trajectory [13], their approaches do not include self-organized 
locomotion which can provide more flexibility and 
adaptability to deal with uneven terrain. CPGs, reflexes, and 
sensory feedback observed in animals have been a major 
source inspiration for adaptive locomotion control of 
quadruped robots in many researches [9-13]. The majority of 
CPG and reflex models, under appropriate adjustments of 
sensory feedback, have been applied to enable robots to adapt 
to changes of irregularity terrain. However, not all models are 
available for exploiting decoupled CPGs to form 
self-organized locomotion.  

From this point of view, in this study, we proposed 
adaptive neural control based on decoupled CPGs with 
sensory feedback adaptation and neural reflexes for 
self-organized locomotion and obstacle negotiation. Our 
approach, inspired by [2, 12, 16], has the following 
distinguished aspects: 1) decoupled neural CPG circuits for 
flexible and independent individual leg control, 2) sensory 
feedback adaptation with dual-rate learning for automatic 
feedback gain adjustment and generalization, and 3) neural 
reflex mechanisms for stability and obstacle negotiation. This 
results in self-organized interlimb coordination allowing our 
simulated mammal-like quadruped robot to adaptively form 
quadruped-like gaits and negotiate an obstacle. 
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Our contribution is a self-organized quadrupedal 
locomotion generator based on adaptive neural control with 
decoupled CPG circuits, sensory feedback adaptation and 
neural reflex mechanisms.  Another key contribution of this 
work is an implementation of dual-rate learning to tune 
feedback gains online. 

 

 

 

 

Figure 1. (a) The overview diagram of the adaptive neural control embedded 

in the sensorimotor loop. The control consists of three main mechanisms: 
Decoupled neural CPG circuits, sensory feedback adaptation, and neural 

reflex mechanisms. (b) Mechanical setup of the robot in this study 

II. SYSTEM OVERVIEW 

In this study, self-organized locomotion and obstacle 
negotiation of a quadruped robot are achieved via a 
sensorimotor loop which involves adaptive neural control, 
sensory feedback, and robot body dynamics (Fig. 1(a)). The 
adaptive neural control has three main mechanisms: 
Decoupled neural CPG circuits, sensory feedback adaptation 
with dual-rate learning, and neural reflex mechanisms 
(described in the section below). Here we simulated a 
mammal-like quadruped robot using the Modular Robot 
Control Environment embedded in the LpzRobots toolkit [17]. 
It was used for developing and testing our neural control. The 
morphology and dimensions of the robot were modelled based 

on the Laikago dog robot of UNITREE2. It has four identical 
legs. Each leg has three joints (Fig. 1(b)). The hip1 joint 
enables elevation (+) and depression (-) of the thigh, the hip2 
joint enables forward (+) and backward (-) movements, and 
the knee joint enables flexion (+) and extension (-) of the calf. 
Each leg contains a spring compliant element of the foot to 
substitute tendon and muscle viscoelasticity. We also 
implemented a foot contact sensor on each leg and a 2-axis 
body attitude sensor (roll, pitch). It has dimensions of 560 mm 

 350 mm  160 mm, while the lengths of the thigh and calf 
are 200 mm and 275 mm, respectively (see in Fig. 1(b)). The 
mass of the whole robot is 28.2 kg. 

 

Figure 2. The detail diagram of the identical adaptive neural control of four 

legs: right front (RF), right hind (RH), left front (LF) and left hind (LH), 
respectively. It consists of a decoupled neural CPG circuit with five 

subnetworks or modules including (central pattern generator) CPG, 

(postprocessing PCPG) PCPG, (phase switching network) PSN, (velocity 
regulating network) VRN and (motor neurons) MNs, sensory feedback 

adaptation with a forward model (FM) and a dual-rate learning 

algorithm(DL), and neural reflexes generating commands to motor neurons 
responding to the changes of body attitude signals. The performance of the 

adaptive neural control network can be adjusted by five parameters: , , d, v 

and . The functionalities of the parameters are described as follows:  can 

adjust the amplitude of the FM output,  is able to indirectly decide the period 

of stance phase, d can switch the phases of the PCPG outputs,  can adjust the 

amplitude of the VRN output, MI can adjust the frequencies of CPG signals. 

These parameters have been empirically set as:  = 0.55,  = 0.64, d = 1,  = 

0.08, MI = 0.075 in the following experiments (more details can be seen at 

[16]). 

III. ADAPTIVE NEURAL CONTROL FOR SELF-ORGANIZED 

LOCOMOTION AND OBSTACLE NEGOTIATION 

A. Decoupled neural CPG circuits 

The decoupled neural CPG circuits play a pivotal role for 
inducing self-organized quadruped locomotion in this study. 
Here we have four identical CPG circuits. Each of them, 
controlling one leg, consists of five elements or modules (Fig. 

 
2 http://www.unitree.cc/ 
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2): 1) neural oscillator network serving as a CPG for 
generating basic rhythmic patterns, 2) neural postprocessing 
of CPG (PCPG) for shaping CPG’s output signals and, thereby, 
adjusting foot trajectory, 3) velocity regulating network (VRN) 
for regulating the hip2 joint signal, 4) phase switching 
network (PSN) for switching the phase of PCPG’s outputs, 5) 
motor neurons (MNs) for transmitting motor commands to 
three leg joints of the robot.  

As for the CPG, it generates two periodic output signals, 
which are provided to the hip2 joint and the knee joint only 
indirectly passing through PCPG, PSN, VRN, and MNs. Thus, 
the basic rhythmic leg movement is generated by the CPG. 
The smooth foot trajectory is achieved by PCPG in accordance 

with the given input  The steering capability is realized by 
PSN and VRN in accordance with the given inputs v and d. 
MNs are used to send control signals to motors. The detail 
descriptions of PSN and VRN can be seen at [16].  

In detail, we use a CPG with sensory feedback proposed 
by [18]. It consists of two mutually inhibiting neurons (Fig. 2). 
Each neuron in this model is represented by the following 
equations: 
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1,2 are positive variables as the sensory feedback gain 
automatically adjusted by dual-rate learning. It is described in 
detail in the following section. F(n) represents the continuous 
ground reaction force (GRF) detected by the foot contact 
sensor (FC) as a sensory feedback to CPG. B1,2 represent fixed 
internal bias terms of two neurons, w1j,2j are the synaptic 
weight of the connection from the jth neuron to the 1th and the 
2th neuron. ai(n) is the neuron activity, and oi(n) is the neuron 

output. In these equations, F(n) ≈ 0 if a foot does not touch 

the ground. The weight and bias parameters were empirically 
set as: B1,2 = 0.01, w11,22 = 1.4, w12 =MI + 0.18, w21 = -MI – 
0.18, MI = [0.04, 0.12] in order to realize intralimb 
coordination. MI can adjust the frequencies of CPG signals. 
The detailed description of the parameters is referred to [16].  

PCPG can smooth the outputs of CPG. It is represented by 
the following equations: 
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o1,2(n) are the CPG outputs,  is a variable to adjust the 
raising period of output signals. aP

1,2(n) are PCPG’s activities. 
oP

1,2(n) are its outputs corresponding to the inputs, that are 

linear with step n, and b(n) and k(n) are the slope and intercept 
of this linear relationship, respectively. In these equations, the 

output ascends from -1 to 1 if the input is greater than  (o(n)  

 ). The output descends from 1 to -1 if the input is less than 

 (o(n)   ). Thus, the periods of the flexion and extension 

movements of the knee joint can be modified by  to indirectly 
modulate the duty factor of foot trajectory. 

MNs include three motor neurons corresponding to three 
joints of one leg. All motor neurons are modelled as 
discrete-time non-spiking neurons. They collect command 
signals from the CPG based control network and the reflex 
network, and then drive the joint motors of one leg. The 
activity and output of each neuron are governed by following 
equations: 
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oj(n) is an input coming from PSN or VRN and reflex 
(described in subsection C). n denotes the number of neurons 
connected to the motor neurons, while i indicates a motor 
neuron. Bi is the bias term of a motor neuron, ai(n) is the 
activity, and oi(n) is the output. 

B. Sensory feedback adaptation with dual-rate learning  

The suitable sensory feedback gains 1,2 play an important 
role to properly modulate the CPG phases and, thereby, form 
self-organized stable locomotion. To automatically adjust the 
gains and, hence, online tune this decoupled CPG circuits, we 
applied a dual-rate based learning mechanism [20] (Fig. 2, 
green blocks). There are two components underlying the 
learning mechanism: 1) a two-rate, gain-independent learning 
algorithm (DL), inspired by [21], and 2) a forward model 
(FM). DL uses the error signal, i.e., the difference between an 
expected ground reaction force (GRF) and a real GRF, to 
output the sensory feedback gains. FM is used here to translate 
the output of the knee motor neuron into the expected GRF for 
the learning algorithm. FM uses the following equations for 
the translation:  
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2(n) is the output of the motor neuron of the knee joint, 

Fe(n+1) is the expected GRF, and  is a shaping parameter for 

the expected GRF. It has a range of [0, 1], we found that   = 

0.99  is easier to make the expected GRF similar to real GRF 

through simulation test.  is a scaling factor to scale the 
amplitude of the expected GRF such that it matches the real 
GRF. G(n) is a variable for switching expected stance phase 

and swing phase depending on the 2(n). In the following 

experiments, the parameters were set to  = 0.55. 

To reduce the difference, this learning process consists of a 
fast learner and a slow learner, both are modelled as linear 
systems that act in parallel. The dual rate learner follows the 
equations: 
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Fr(n) and Fe(n) are real GRF and expected GRF, 
respectively. Bs and Bf correspond to the learning rate of the 
slow and fast learners. As and Af are two retention factors. The 
fast and slow learners can be differentiated by these 
parameters. The fast learner has a higher learning rate, where 
the slow learner is characterized by a high retention rate, being 
necessary that As > Af and Bs < Bf . K is a global scaling factor, 
and M is a global retention factor. The parameters of the 
learning used in this paper have been empirically set as: As = 
0.993, Af = 0.57, Bs = 0.0002, Bf = 0.002, K = 10, M = 0.08, the 
detail information can be seen in [19]. 

C. Neural reflex mechanisms 

In order to improve the attitude stability of the robot so that 
it can negotiate obstacle during locomotion, attitude control of 
the reflex mechanism has been implemented by drawing 
lessons from biological performing concepts [22, 23]: When 
the vestibule in a head detects an inclination in pitch or roll 
plane, a downward-inclined leg is extended while an 
upward-inclined leg is flexed (Fig. 3). 

A neural network implementing the reflex mechanisms 
was developed by imitating the biological behaviors to 
achieve the attitude control (Fig. 3(b)). As shown in Fig. 3(b), 
the network contained three components: three input neurons, 
a VRN, and two output neurons. The input neurons N1 and N2 
receive body attitude information and N3 receives local real 
GRF information. In detail, a recurrent connection has been 
implemented on N1 to calculate the derivation of the attitude 
signals. N2 receives and then sums the derivation term of the 
attitude signals from N1 and the original term of the attitude 
sensor. The outputs of N2 and N3 are multiplied by VRN, 
which enable the stance legs to generate response except for 
swing legs. The N4 and N5 neurons are connected to the motor 

neurons of the hip2 joint and the knee joint, respectively. w1r,2r 
are the synaptic weights between the body roll and N1 and N2. 
w1P,2P are the synaptic weights between the body pitch and N1 
and N2. All neurons of this network are modelled as 
discrete-time non-spiking neurons. The transfer functions of 
these neurons are a hyperbolic tangent function except for N4 
and N5 whose are a linear function. 

In addition, the corrective reflex behaviors of four legs 

depend heavily on the synaptic weights. For example,  w1r of 
ipsilateral legs have same sign, whereas contralateral legs are 
opposite sign. Moreover, w1P is the same for the fore and rear 
legs (see Fig. 3(c)). As for the values of the synaptic weights, 
they just depend on the lengths of calf and thigh as well as the 
power of actuator of the specific robot. We set these values for 
our simulated robot through empirical tests. The resulting 
synaptic weights are as shown in Fig. 3(c). 

 

Figure 3. Neural reflex mechanisms. Reflex behaviors with respect to 
pitch and roll signals of the robot body. 

IV. SIMULATION RESULTS 

To evaluate the performance of the proposed adaptive 
neural control, two simulations were carried out (Fig. 4). The 
first one was to explore the performance of self-organized 
adaptive locomotion of the simulated robots on flat terrain (see 
Fig. 5). The second one was to compare the robot’s attitude 
stability (roll, pitch) between the decoupled neural CPG 
circuits with and without the neural reflex mechanisms while 
negotiating an obstacle. The obstacle height is about one third 
of the calf length of the robot (see Figs. 6). The neural control 
parameters for our experiments are listed in Table 1. 

As shown in Fig. 5, we initiated the decoupled neural CPG 
circuits to outputs in phase while the robot was fixed in the air 
at beginning. As soon as the robot was dropped on the ground 
at around 5 s, the sensory feedback mechanisms were enabled. 
The gains of the sensory feedback were automatically adjusted. 
After around 8 s, the gains were converted and oscillated 
around 0.15. As a consequence, a walk gait autonomously 
emerged. This gait is the transversal gait between tort and pace 
gaits [10]. From the simulation results, one can see that such a 
quadruped-like gait was generated in a self-organized manner. 
This was induced by decoupled neural CPG circuits with 
sensory feedback adaptation after a short period of time.  

As shown in Fig. 6, the robot walked forward to negotiate 
an obstacle using two compared control approaches, 
decoupled neural CPG circuits without and with neural reflex 
mechanisms. The walking process of the robot was divided 
into five stages (S1: the robot was fixed in the air, S2: the 
robot adapted its gait from irregular to regular, S3: the robot 
went forward with a walk gait, S4: the robot climbed the 
obstacle, S5: the robot crossed over the obstacle). Both 
approaches almost induced same performance in robot’s 
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attitude stability and walking displacement from S1 to S3. 
Nevertheless, the robot using the first approach shows worse 
performance at the later walking stages. For instance, without 
the reflex mechanisms at S5, the forward displacement of the 
robot stalled in around 1.5 m (Fig. 6(a)), its gait was also 
disturbed (Fig. 6(b)), the pitch angle of the robot had bigger 
fluctuating (Fig. 6(d)). The reason of these is the robot got 
stuck on the obstacle and unable to walk down it at S4. As 
demonstrated, the robot based on the decoupled neural CPG 
circuits with sensory feedback adaptation and additional 
neural reflex mechanisms can show better walking 
performance while it negotiating an obstacle.  

TABLE 1. RANGE AND VALUES OF THE 
PARAMETERS USED IN ALL EXPERIMENTS 

Parameter Range Value Parameters Range Value 

 [0.0, 1.0] 0.55 d [-1.0, 1.0] 1.0 

 [-0.8, 0.8] 0.64 v [-0.5, 0.5] 0.08 

MI [0.04, 0.12] 0.075    

 

Figure 4. Simulation screenshots. (a) Self-organized quadruped locomotion on 
flat terrain. (b) Adaptive obstacle negotiation. 

 

Figure 5. The process of generating a walk gait from initial state where all legs 

move in phase. (a) The snesory feedback gains of four identical legs. (b) The 
gait diagram from initialization (all the legs moved in same phase) to 

self-organized stable locomotion. The black areas indicate ground contact or 

stance phase. The white areas refer to no ground contact or swing phase. At the 
beginning, the robot was positioned in the air and then dropped on the ground 

at around 4 s. After around 8 s, a stable gait emerges. For this gait, the dignoal 

legs almost move in phase.Note that, RF is the right front leg, RH is the right 
hind leg, LF is the left front leg, and LH is the left hind leg. The video clip of 

this experiment can be seen at 

http://www.manoonpong.com/ROMAN2018/video1.mp4. 

 

 

 
Figure 6. The robot negotiates an obstacle. The decoupled CPG circuits with 
and without the neural reflex mechanisms were used to test and compare. (a) 
The forward displacement of the robot from the two methods. The walking 

process was divided into five stages (S1: the robot was fixed in the air, S2: the 
robot adapted its gait from irregular to regular, S3: the robot went forward 

with a walk gait, S4: the robot climbed the obstacle, S5: the robot crossed over 
the obstacle). (b) The gait diagram of the robot from the two methods (The 

black areas indicate ground contact or stance phase, the white areas refer to no 
ground contact during swing phase). (c) The roll angles of the robot body 

under the two methods. (d) The pitch angles of the robot under the two 
methods. The video clip of this experiment can be seen at 
http://www.manoonpong.com/ROMAN2018/video2.mp4. 
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V. DISCUSSION AND CONCLUSION 

In this study, a mammal-like quadruped robot was 
presented to serve as a platform for developing and testing 
adaptive neural control for self-organized locomotion and 
obstacle negotiation. The simulation results demonstrate the 
capabilities of our control strategy in terms of 
self-organization, adaptation, and stability.  

The contributions of this work include: self-organized 
quadruped locomotion on flat terrain generated by decoupled 
neural CPG circuits with sensory feedback adaptation. Each 
neural CPG circuits consists of five modules: CPG, PCPG, 
VRN, PSN, and MNs. As a result, the decoupled neural CPG 
circuits with sensory feedback adaptation can autonomously 
generate emergent quadruped locomotion. Additionally, with 
neural reflex mechanisms having three components (three 
input neurons, a VRN network, and two output neurons), the 
robot can adapt its self-organized gait to negotiate an obstacle. 
Furthermore, the structure of this adaptive neural control is 
independent of mechanical setup of a robot, it can be 
generally applied to other legged robots with only few 

parameter adjustment (i. e.,  ). 

Take together, this work suggests that a tight combination 
of the body-environment interaction and the adaptive neural 
control, guided sensory feedback adaptation and reflexes, is a 
powerful approach to better understand and solve 
self-organized adaptive coordination problems in quadruped 
locomotion. In the future, we aim to integrate more 
proprioceptive sensory feedback (e.g., joint angles) and 
muscle models to achieve robust locomotion against leg 
damage and multiple obstacle negotiation as well as to allow 
for more complex and energy-efficient locomotion on 
different slopes and substrates. 
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