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Real-time ground reaction force and knee
extension moment estimation during drop
landings via modular LSTM modeling and

wearable IMUs
Tao Sun, Dongxuan Li, Bingfei Fan, Tian Tan, and Peter B. Shull Member, IEEE

Abstract— Objective: This work investigates real-time
estimation of vertical ground reaction force (vGRF) and
external knee extension moment (KEM) during single- and
double-leg drop landings via wearable inertial measure-
ment units (IMUs) and machine learning. Methods: A real-
time, modular LSTM-based model with four sub-deep neu-
ral networks was developed to estimate the vGRF and
KEM from wearable IMUs. Sixteen subjects wore eight
IMUs on the chest, waist, right and left thighs, shanks,
and feet and performed drop landing trials. Ground em-
bedded force plates and an optical motion capture system
were used to capture lower extremity biomechanics for
model training and evaluation. Results: During single-leg
drop landings, accuracy for the vGRF and KEM estima-
tion was R2=0.88±0.12 and R2=0.84±0.14, respectively, and
during double-leg drop landings, accuracy for the vGRF
and KEM estimation was R2=0.85±0.11 and R2=0.84±0.12,
respectively. The best vGRF and KEM estimations of the
model with the optimal LSTM unit number (130) require
eight IMUs placed on the eight selected locations during
single-leg drop landings. During double-leg drop landings,
the best estimation on a leg only needs five IMUs placed
on the chest, waist, and the leg’s shank, thigh, and foot.
Conclusion: The proposed modular LSTM-based model
with optimally-configurable wearable IMUs can accurately
estimate vGRF and KEM in real-time with relatively low
computational cost during single- and double-leg drop
landing tasks. Significance: This investigation could poten-
tially enable in-field, non-contact anterior cruciate ligament
injury risk screening and intervention training programs.

Index Terms— Machine learning, anterior cruciate liga-
ment, landing, wearable sensors, kinetics.

I. INTRODUCTION

Landing technique is an important skill across a spectrum of
competitive sports, including basketball, volleyball, and hand-
ball [1], [2]. Landings typically induce high ground reaction
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forces (GRF) on the feet and produces more prominent peak
knee moments than standing, walking, or running [3]–[5].
Vertical GRF (vGRF) and external knee extension moment
(KEM, produced by external forces (i.e., GRF and gravity))
during landing tasks are crucial biomechanical indicators of
non-contact anterior cruciate ligament (ACL) injury risk [3],
[6], [7]. vGRF and KEM are typically measured in specialized
laboratories using optical motion capture systems and force
plates. This traditional measurement method is expensive and
complex. It also limits widespread and in-field ACL-related
implementations/applications, such as ACL-injury risk screen-
ing, intervention training for ACL-injury risk reduction, and
real-time control of active assistive devices on the knee [8],
[9]. Real-time estimation of biomechanical variables can be
used to generate biofeedback, which is essential for retraining
programs as they enable subjects to recognize their landing
abnormalities through real-time feedback [8], [10], [11]. Also,
a real-time estimation can be potentially used in the control
of active assistive devices on knee joints [9].

Some physical models have been developed to estimate
biomechanical variables. Tibial acceleration has been widely
used as a surrogate measure of impact loading. This ap-
proach can be called ”acceleration-similarity model” because
the acceleration value has a similar profile as the loading
rate [12]–[15]. Although the acceleration-similarity model is
easy to operate and relies on fewer sensors (e.g., a single
IMU), the approach generally has low accuracy (correlation
coefficient of 0.44− 0.66 [15]). To achieve higher estimation
accuracy, complex physical models, i.e., segment-link models,
have been proposed for different activities including walking
and ski jumping [16]–[18]. Segment-link models simplify the
human body or lower limbs as rigid links without considering
detailed and individual segment characteristics. The segment-
link models derive kinetics from Newton-Euler equations.
With accurate kinematics parameter values (derived from IMU
sensors) and anthropometric data (i.e., mass, center of mass,
radii of gyration ratios, and inertia [17], [19]), the segment-
link models can exhibit promising estimation accuracy, the
parameter values are often determined from older data sets
[19].

To overcome the drawbacks of physical models, data-
driven modeling methodologies have been proposed to esti-
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mate biomechanical variables, such as loading rate [15], GRF
[1], [20]–[22], and knee moments [23], [24] in walking and
running, using inexpensive and portable wearable inertial mea-
surement units (IMUs). Unlike periodic walking and running
movements, drop landings are characterized by large, non-
periodic, and short-term impacts. These features require drop
landing estimation models to have a faster response and higher
stability to cope with the special impacts. Therefore, drop
landings require distinctive IMU models that are specifically
tailored to capture landing characteristics.

Two primary approaches have been proposed for estimat-
ing the vGRF and KEM during drop landings. A multiple-
feature linear regression model combined with two IMUs
was proposed by Chaaban et al. [25] to predict peak vGRF,
peak knee flexion angle, peak KEM, and peak sagittal knee
power absorption during double-leg jump landings. The model
was trained with empirically selected features extracted from
accelerations and angular velocities measured by the IMUs
worn on the shank and thigh of subjects. Although the model
was efficient, it could only estimate the peak values of the
variables. In addition, the estimation process was offline and
the input features needed to be extracted from the whole drop
landing period at once. Another model was developed by
Cerfoglio et al. [26] using the nonlinear autoregressive network
with external input (NARX). The model inputted with IMUs
was able to estimate the three-dimensional GRF and knee
moment profiles. The NARX is a recurrent dynamic neural
network with feedback connections enclosing several neural
network layers, which can map the nonlinear and complex
relationship between IMU signals and the GRF and knee mo-
ments. However, the model requires force plate measurements
to determine the landing phase, and it cannot be executed
in real time. Additionally, although the model could predict
three-dimensional GRF and knee moment, it was designed
with a complex structure (i.e., 2006 neurons in hidden layers),
thereby requiring a lot of computation resources or having
high time-complexity. Also, the existing research of landing
biomechanical estimations only focused on the specific target
variables during double-leg drop landings [25], [26], while
single-leg drop landings, which have a higher injury risk than
double-leg [3], have not been investigated so far. To sum
up, the two primary approaches for ACL-related assessment
are currently limited by several factors, including inability
to predict the whole profile of the variables or dependencies
on non-wearable equipment, lack of real-time estimation, and
the fact that it is not applicable to single-leg drop landings
[25], [26]. Therefore, a concise estimation model that can
efficiently and in real-time predict required variables during
single- and double-leg drop landings would be more beneficial
for practical ACL-related applications.

The number and locations of wearable IMUs and model
complexity can also significantly affect estimation accuracy
of the vGRF and KEM. For example, a shank-worn IMU has
been demonstrated to be significantly more accurate than the
IMUs placed on the other body segments when estimating the
loading rate of the vGRF during running [15]. For drop landing
tasks, only shank and thigh have been selected for placing
IMUs [25], [26]. However, chest (or trunk) and pelvis flexion

angles, as well as toe direction would influence non-contact
ACL injury risk in drop landings due to their association
with knee biomechanics [6], [27], [28]. It is unclear whether
incorporating IMUs placed on the chest, waist, and feet
could significantly influence the vGRF and KEM estimation
accuracy.

The primary limitation of current approaches is that existing
estimation models of the vGRF and KEM during drop landings
are not in real time and cannot be applied to single-leg drop
landings. Therefore, this study proposed a modular long short-
term memory (LSTM)-based model that uses body-worn IMUs
to estimate the vGRF and KEM in real time during single- and
double-leg drop landings.

II. METHODS

A. Modular LSTM-based model for real-time estimation

A modular LSTM-based model combined with wearable
IMUs was developed to estimate the vGRF and KEM in real
time during single- and double-leg drop landings (Fig. 1). The
model has three components: (1) a drop landing event detec-
tion module to identify the region of interest (ROI) of a drop
landing movement based on IMU acceleration magnitudes, (2)
a time-window buffer to store and transferring IMU data, and
(3) four small-sized sub-networks to map normalized IMU
signals to the target variables (i.e., the vGRF and KEM). Drop
landing ROI is defined as a short but complete period of the
drop landing motion for the estimation. The four sub-networks
have the same structures which were trained to estimate
the different target variables. The model is modular in that
the sub-networks can predict different variables by activating
the corresponding sub-networks, thus saving computational
resources in portable applications.

A subject’s motion states during drop landings, such as take-
off, flight phase, landing, and stance phase, can be estimated
using the acceleration of a subject’s body [21], [29]. When the
magnitude is less than gravitational acceleration, the subject
is in flight phase [21] and when the magnitude increases to
several times gravitational accelerations, the subject touches
the ground [29]. These principles can be adapted to determine
the flight phase and landing event of drop landings as follows:

motion state =


flight phase, ‖gimu‖ < α‖g0‖
landing event, ‖gimu‖ > β‖g0‖
pre-flight or post-landing, others

,

(1)
where ‖gimu‖ and ‖g0‖ denote the magnitudes of the IMU
and gravitational accelerations, respectively. α is a coefficient
to compensate the IMU accelerations induced by the subject’s
segment movement in the air. α was empirically set to 0.5
in the following experiments. β is a threshold coefficient of
landing accelerations and was set to 5 following [29].

The drop landing event detection module can real-time
monitor the changes in the acceleration magnitude of an
IMU (i.e., placed on the chest) to automatically identify the
beginning and end moment of the ROI (1). The start of the
ROI occurs in the flight phase, which is identified when
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Deep neural network

LSTM

FC

60
neurons

30
neurons

1
neurons

units

vGRF and KEM

during single- and double-leg drop landings

Stacked IMU signals

Linear accelerations

Angular velocities

Frame
index

Time-window buffer

Fig. 1. Architecture of the proposed modular LSTM-based model for
real-time estimation of the vGRF and KEM. The model identifies the
region of interest (ROI) of the drop landings based on IMU acceleration
magnitudes. Meanwhile, the IMU data are stored in a time-window
buffer. When the ROI is identified, the buffered data are transferred into
one of four identical deep neural networks for predicting target variables.
The model is modular and it can be configured to output the vGRF or
KEM during single- or double-leg drop landings by activating the different
neural networks.

the acceleration magnitude is smaller than α‖g0‖ (Fig. 2).
From the moment, the IMU data are regarded as valuable
inputs and fed to the model. Each frame of IMU data is
indexed and update from zero. After a landing event happens
(‖gimu‖ > β‖g0‖) and the frame index number reaches LROI

that defines the length of the drop landing ROI, a complete
drop landing period is fulfilled. LROI was empirically set to
80 frames (0.8 s) so that the landing moment was inside the
ROI in the following experiments. In the presence of sensor
noise in acceleration, the identified start, landing, and end
moments of the ROI may deviate from their true positions,
thereby leading to an offset in the detected ROI. However, the
threshold coefficients (α and β) offer sufficient tolerance for
the effect of the noise. As a result, the accuracy of the ROI
detection was ensured.

The time-window buffer receives each frame of the IMU
data and slides over the entire drop landing ROI. The buffer

Fig. 2. Graphical interpretation of identifying the ROI during a drop
landing task. The start moment of the ROI is identified when the
acceleration magnitude of an IMU reduces to less than 0.5‖g0‖. The
frame of IMU data is indexed as zero at the start moment. After a landing
event happens (1) and the frame index increases to LROI , the drop
landing ROI is fulfilled. The start and end moments define the period of
ROI, which includes the landing moment inside.

stores the current and three previous frames of IMU data and
stacks the frame index. Every four frames of the IMU data
and frame index are normalized and transferred to the selected
neural networks through the switch channels.

Each neural network contains an LSTM layer with Ln

units and three fully-connected (FC) layers with 60, 30, and
one neurons, respectively. The LSTM layer can effectively
process temporal inputs to obtain the complex and dynamic
relationship between the IMU data and the target variables
(i.e., the vGRF and KEM) [30]. The outputs of the LSTM
layer are transferred to the normalized target variables (GRF
or KEM) by the three FC layers. The activations of neurons
in the three FC layers are rectified linear unit (ReLU), ReLU,
and tanh, respectively.

The model was trained and tested based on a leave-one-
subject-out cross-validation method such that all data from one
subject were used for testing while the data from the remaining
subjects were used for training [23], [31]. The LSTM and
FC neural networks of the model were implemented using
Keras (version 2.5.0), a high-level neural networks application
programming interface (API) in Python. Low-level operations
were performed in TensorFlow (version 2.5.0), which inter-
faced with Keras. The Glorot normal initializer was used to
initialize the LSTM cell state and FC layer neurons, and
the stochastic gradient descent with momentum optimizer
was used to optimize the training process. The dropout layer
was used in the training process to avoid over-fitting. Max-
min normalization was used to normalize each IMU channel.
The normalization parameter values were determined by the
training data, and the same parameter values were applied to
the testing data. The model is modular and it can be configured
to predict different variables of single- and double-leg drop
landings by selecting the corresponding sub-network.

B. Participants

Sixteen males with no history of musculoskeletal disorders
were recruited to perform single- and double-leg drop landing
tasks to collect dataset for model training and evaluation.
Average and standard deviation of age, height, and weight
were 23.2 ± 1.4 years, 1.77 ± 0.04 m, and 72.8 ± 9.7 kg,
respectively. All subjects provided written informed consent
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prior to testing, and the experimental procedure was reviewed
and pre-approved by the university ethics committee under No.
E2021013P.

C. Experimental protocol

The drop landing experiments to collect the dataset were
conducted in a biological laboratory equipped with a ten-
camera optical motion capture system (100 Hz, Vicon™, UK)
and two side-by-side force plates (1000 Hz, AMTI™, USA)
embedded in the floor (Fig. 3 (a)). During drop landings, the
optical motion capture system and embedded force plates were
used to acquire subjects’ kinematics and GRF. The measure-
ments were used as the ground truth of the model output in
model training and evaluation. The model inputs were motion-
related segments’ accelerations and velocities. For the vGRF
and KEM estimations, the motion-related segments typically
were the chest, waist, thighs, shanks, and feet [15]. Thus,
eight wearable IMUs (Xsens Technologies B.V., Enschede,
The Netherlands) were placed on the segments to collect
their accelerations and angular velocities. The values were as
features by the model to make estimations for the vGRF and
KEM of the leg (Fig. 3 (b)). The measurements of the optical
motion capture system, force plates, and IMU system were
synchronized via RCA sync cables which connected the three
systems to start recording data simultaneously.

To facilitate the implementation of the proposed estima-
tion model, IMUs were manually placed without installation
calibrations. The reference anatomical locations of the IMUs
were (Fig. 3 (b)): trunk–fifth thoracic vertebrae, pelvis–mid-
point between left and right anterior superior iliac spine, left
and right thigh–mid-point between the left anterior superior
iliac spine and left femur medial epicondyle, left and right
shank–one third point between left femur medial epicondyle
and left tibia apex of medial malleolus near proximal end
of tibia, and left and right foot–left second metatarsal [32].
The IMUs’ placement orientation follows the principles: The
IMUs’ z-axes were perpendicular to the skin surface and
y-axes were vertical upward during standing except for the
IMUs on the feet whose y-axes were from the anterior to the
posterior.

We placed 32 reflective markers on anatomical landmarks
according to the Visual3D1 full-body model2 (Fig. 3 (b)):
calcaneus (LFCC and RFCC), head of the second metatarsal
(LFM2 and RFM2), head of the fifth metatarsal (LFM5 and
RFM5), lateral and medial malleoli (LFAL, LTAM, RFAL,
and RTAM), lateral and medial femoral epicondyles (LFLE,
LFME, RFLE, and RFLE), tibial tuberosity (LTT and RTT),
lateral mid-shaft shank (LSK and RSK), greater trochanter
(LFT and RFT), lateral mid-shaft femur (LTH and RTH),
left and right ilium crest tubercle (LIAS and RIAS), left and
right posterior superior iliac spines (LIPS and RIPS), sternum
jugular notch (SJN), left and right acromion (LAC and RAC),
seventh cervical vertebra (CV7), sternum xiphisternal joint

1https://www.c-motion.com/
2https://c-motion.com/v3dwiki/index.php?title=

Marker_Set_Guidelines

Fig. 3. Experiment setup. (a) A biomechanical laboratory with an optical
motion capture system and two side-by-side embedded force plates
were used to measure drop landing tasks. Subjects were instructed to
land on the force plates from a 30-cm-high stool. (b) Thirty-two reflective
markers were pasted on the subjects’ anatomical landmarks. Eight IMUs
were strapped to the chest, waist, and both thighs, shanks, and feet.
(c) Each subject performed 30 double-leg drop landing tasks with six
different toe directions from toe-in to toe-out and 15 single-leg drop
landing tasks.
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(SXS), and midway between the inferior angles of most caudal
points of the two scapulae (MAI).

Each subject wore standard athletic shoes (Revolution 4,
Nike, Inc., Beaverton, USA) and was instructed to jump
forward from a 30-cm-high stool to the embedded force plates,
landing on both legs or a single leg (Fig. 3 (a)). Valid double-
leg drop landing trials were repeated 30 times with six dif-
ferent toe directions: a self-selected toe direction and five toe
directions from toe-in to toe-out in individual acceptable toe
direction ranges (Fig. 3 (c)). Each toe direction condition had
five trials. The aim of varying the toe direction was to produce
various landing kinetics to increase the generalisability of the
data set. Afterward, each subject performed single-leg drop
landing trials, in which 15 valid trials were collected. From
a safety aspect, the subjects were not asked to manipulate
the toe direction during single-leg drop landings. The optical
motion capture system, force plates, and eight IMUs were
synchronized to collect the dataset for model training and
evaluation.

D. Data processing
The vGRF measured by the force plates were down-sampled

from 1000 Hz to 100 Hz and filtered at 15 Hz using a
zero-lag second-order low-pass Butterworth filter [33]. A
threshold of 20 N in the vGRF was used to determine the
initial foot-ground contact. To calculate the KEM, we built a
biomechanical model for each subject in Visual3D using the
data measured by the optical motion capture system and force
plates (Fig. 4). The biomechanical model could output the
KEM that was also filtered with a zero-lag second-order low-
pass Butterworth filter at 15 Hz. The filtered vGRF and KEM
were regarded as ground truth in model training and evaluation
processes. To reduce the influence of varied subjects’ weights
and heights on model training and performance assessment,
the vGRF and KEM were normalized. The vGRF was divided
by the body weight (BW), while the KEM was divided by
the multiplication of BW and body height (BH). The linear
accelerations and angular velocities of the eight wearable
IMUs were also filtered using a zero-lag second-order low-
pass Butterworth filter with a 15-Hz cut frequency. Finally,
the linear accelerations and angular velocities from different
IMUs were stacked as needed before being transferred to the
model.

E. Performance evaluation
vGRF and KEM are highly related to thigh, shank, foot,

waist, and chest during landing tasks [3], [25], [26]. Thus
IMUs were placed at these five segments. The other leg’s
motion state could also influence the leg’s estimation accuracy,
especially during single-leg drop landings, there were three
additional IMUs placed at the other leg’s foot, shank, and
thigh. In the results, we used the right leg (R) as an example
to explore the model performance. There are 31 (

∑5
n=1 C

n
5 )

ways to select one to five IMUs on the right leg’s five typical
locations for feature collections in total (i.e., right leg’s foot
(RF), shank (RS), and thigh (RT), and waist (W), and chest
(C)). We also explored the influence of the five typical IMU
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Fig. 4. The experiment data were measured by synchronizing the opti-
cal motion capture system, embedded force plates, and wearable IMUs
and post-processed for model training and evaluation. Each subject’s
biomechanical model was created to calculate the vGRF and KEM as
the ground truth. IMUs’ acceleration and velocities were low-pass filtered
to be the model inputs.

locations with the one to three additional IMU locations on
the estimation accuracy (i.e., left leg’s foot (LF), shank (LS),
and thigh (LT)).

In addition to the IMU configurations (IMU number and
locations), the LSTM unit number (LLSTM ), which deter-
mines the model complexity and execution time, also affects
the model estimation accuracy. To clarify the influences of
the IMU configurations and LSTM unit number on the model
performance, we trained and tested the model under different
IMU and LSTM unit numbers and compared their performance
to find an optimal IMU number and an optional LSTM unit
number. The execution time of the model under different
LSTM unit numbers was also explored to verify whether
the estimation can be launched in real time concerning the
IMUs with a 100 Hz sampling frequency. The root mean
square error (RMSE), relative RMSE (rRMSE), and coefficient
of determination (R2) between ground truth and estimated
values were employed to assess the model performance. We
referenced similar algorithm development [25], [34], which
defined R2 > 0.80 as high algorithm accuracy. R2 was mainly
used in the investigation of different IMU configurations and
LSTM unit numbers. In the summary of the results, the RMSE
and rRMSE were used to demonstrate the performance of
the models. Besides, we implemented a t-test to determine
whether IMU number and location affect the vGRF and KEM
estimation accuracy. Note that the assessment of the optimal
LSTM unit number and IMU configuration was demonstrated
by the vGRF estimation of the right leg during double-leg drop
landings as an example.

III. RESULTS

A. Estimation results with optimized IMU configurations
and LSTM unit number

The vGRF and KEM estimation of the right leg during
single- and double-leg drop landings can be seen in Fig. 5. In
the estimations, the model had optimized IMU configurations
and an optimal LSTM unit number (Ln = 130). Each ensem-
ble curve in the figure was plotted using 431 and 150 cross-
validation tests of the double- and single-leg drop landing
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trials, respectively. The estimated vGRF and KEM can match
their actual (measured) values well except for the peak values.
The estimation errors during the drop landing mainly occurred
at the peak points.

An overview of the estimation performance for the vGRF
and KEM during single- and double-leg drop landings was
presented in Table I. Compared to the non-optimized IMU
configurations, the model with optimal IMU configurations
showed greater estimation accuracy (Tables I and II). Note
that several estimation results with outlier accuracy (i.e., R2 <
0.4) were removed from the performance assessment. The
optimized IMU configurations for the four target variables
were different. During the single-leg drop landings, the model
with seven IMUs (placed the right leg’ foot, shank, thigh,
the left leg’s foot, shank, the chest, and waist) or all eight
IMUs exhibited the highest mean accuracy, R2 = 0.88± 0.12
and R2 = 0.84 ± 0.14 for the vGRF and KEM estimations,
respectively. During double-leg drop landings, the model with
only four IMUs (placed on the right leg’s foot, shank, thigh,
and chest) and five IMUs (placed on the right leg’s foot,
shank, thigh, chest, and waist) exhibited the highest accuracy,
R2 = 0.85 ± 0.11 and R2 = 0.84 ± 0.12 for the vGRF
and KEM estimations, respectively. The accuracy of 50% and
25% estimations were large than 0.87 and 0.92, respectively.
Some estimations had very low accuracy (R2 < 0.5). This
is probably because those trials were influenced by different
factors, such as loose IMU attachment.

v
G

R
F

 [
B

W
]

Fig. 5. Ensemble curves of the vGRF and KEM estimations dur-
ing double- and single-leg drop landings. The actual (measured) and
predicted vGRF and KEM are shown as the solid and dashed lines,
respectively.

B. Influence of LSTM units and IMU number
We compared the estimation accuracy of the model under

nine different LSTM unit numbers (i.e., 1, 25, 50, 75, 100,
125, 150, 175, and 200) and eight IMU numbers (i.e., 1, 2, 3,
4, 5, 6, 7, and 8). The vGRF estimation accuracy of the right
leg during double-leg drop landings, as an example, was used

TABLE I
ESTIMATION PERFORMANCE OF THE RIGHT LEG FOR THE VGRF AND

KEM WITH OPTIMIZED IMU CONFIGURATIONS DURING SINGLE- AND

DOUBLE-LEG DROP LANDINGS. THE UNITS OF RMSE FOR VGRF AND

KEM WERE BW AND BW · BH, RESPECTIVELY.

Variables IMU configurations Metrics Mean Min 25% 50% 75% Max

R2 0.88 ± 0.12 0.45 0.87 0.93 0.96 0.99
Single-leg

vGRF
RF, RS, RT, W,

C, LF, LS a rRMSE 0.07 ± 0.04 0.02 0.05 0.06 0.09 0.18

RMSE 0.25 ± 0.13 0.08 0.17 0.21 0.29 0.73

R2 0.84 ± 0.12 0.41 0.79 0.88 0.92 0.98
Single-leg

KEM
RF, RS, RT, W,

C, LF, LS a rRMSE 0.10 ± 0.04 0.05 0.08 0.10 0.12 0.23

RMSE 0.54 ± 0.18 0.20 0.41 0.49 0.66 1.18

R2 0.85 ± 0.11 0.42 0.81 0.89 0.92 0.97
Double-leg

vGRF
RF, RS, RT,

C rRMSE 0.08 ± 0.03 0.04 0.06 0.08 0.10 0.19

RMSE 0.18 ± 0.06 0.08 0.14 0.17 0.21 0.37

R2 0.84 ± 0.12 0.45 0.80 0.87 0.92 0.98
Double-leg

KEM
RF, RS, RT,

C, W b rRMSE 0.10 ± 0.04 0.04 0.08 0.10 0.12 0.21

RMSE 0.38 ± 0.10 0.16 0.31 0.38 0.45 0.62
a The estimation accuracy of the models with seven and eight IMUs were close to each other in R2

during single-leg drop landings.
b The KEM estimation accuracy of the models with five and more IMUs were close to each other in
R2 during double-leg drop landings.

to represent the comparison. The accuracy results (R2) were
regressed with a two-order polynomial method to visualize
their relationship. The proposed model under the different
IMU numbers all had optimal LSTM unit numbers from 100
to 150 concerning the accuracy (R2) (Fig. 6). From one to
four IMUs, the model exhibited gradually increased accuracy
independence on the LSTM units, while the accuracy had no
improvement from using four to seven IMUs. This indicates
that adding more IMUs and using a proper LSTM unit number
is an effective way to improve the estimation accuracy when
the available IMU number is less than or equal to four. The
optimal LSTM unit numbers of the model under all IMU
numbers were close to 130 (Ln = 130), so this value was
used in the experiments of the following results.

1

Fig. 6. The vGRF estimation accuracy (R2) of the right leg during
double-leg drop landings under the model with different LSTM unit and
IMU numbers. The optimal LSTM unit numbers of the model under
different IMU numbers are all close to 130.

More LSTM units complicated the model and increased
the time complexity of the model. The computation time of
each estimation frame increased with the increase of LSTM
units (Fig. 7). Note that the time cost did not include data
collection and transmission of the eight IMUs. We examined
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the execution time of the model when estimating the vGRF
of the right leg with five IMUs during a double-leg drop
landings. The estimation was executed on a personal computer
(Intel(R) Xeon(R) CPU E5-2678 v3 @2.5 GHz and 8GB
DDRAM) using only a single CPU core for the computation.
The execution time of estimation per frame is raised slightly
when using more LSTM units. The average execution time
per frame was less than 10 ms. It indicated that the model
can estimate the target variables in real time by using the
wearable IMU having a 100 Hz sampling frequency on the
personal computer without using GPU.

Fig. 7. Execution time of the estimation per frame increased with the
increase of the LSTM units. The execution time was collected when the
model with five typical IMUs launched on a personal computer (Intel(R)
Xeon(R) CPU E5-2678 v3 @2.5 GHz and 8GB DDRAM)

The proposed model with more IMUs exhibited higher
estimation accuracy (Fig. 8). The median estimation accuracy
of the model with one to four IMUs increased significantly
while the model with four to eight IMUs has no significant
improvement in median accuracy. The model with four IMUs
exhibited a little higher median estimation accuracy than that
with more than four IMUs. The accuracy deviation of the
model estimation decreased when using an increased IMU
number. From the perspective of average accuracy, the model
with more IMUs showed better performance. This is because
the IMU locations also affect the estimation accuracy even
with the same IMU number.

C. Influence of IMU locations
The locations of the IMUs on subjects also determine

the feature selections and then affect the model estimation
accuracy [31]. We explored the model performance with a
single IMU placed on the eight IMU locations in the vGRF
estimation during the double-leg drop landings (Fig. 9). Their
median accuracy of the model estimation gradually increased
from the left shank (LS), right foot (RF), waist (W), left foot
(LF), left thigh (LT), right thigh (RT),and right shank (RS) to
the chest. The median accuracy of the right thigh, right shank,
and chest are significantly greater than that of other single
IMU locations. The model with an IMU placed on the chest
exhibited the greatest median accuracy.

For the vGRF and KEM estimation of a leg (e.g., the
right leg), the other leg’s (e.g., the left leg) motion state

ns ns ns

Fig. 8. The vGRF estimation accuracy (R2) of the right leg during
double-leg drop landing under the model with the eight different IMU
numbers. The lines and triangle points inside the boxes represent
the median and mean of the accuracy, respectively. ns indicates no
statistically significant difference. * denotes significant differences with
p-value ≤ 0.05. To perform the test, the IMU locations were sorted
incrementally according to their mean and median accuracy, as shown
in the figure. Consequently, it was only necessary to test adjacent
conditions.

during landings could also influence the estimation accuracy.
Our experiment results suggested that the left leg’s foot and
shank motions have more influences on the right leg’s vGRF
estimation than the right leg’ foot motion (Fig. 9). This is the
reason why the model with eight IMUs (three of the IMUs on
the left leg) showed high accuracy (Fig. 8).

ns

LS RF LF LT RT RS

Fig. 9. The vGRF estimation accuracy of the right leg during double-
leg drop landing under the model with an IMU placed on the eight IMU
locations: right foot (RF), right shank (RS), right thigh (RT), waist, chest,
left foot (LF), left shank (LS), and left thigh (LT). The lines and triangle
points inside the boxes represent the median and mean accuracy,
respectively. ns indicates no statistically significant difference. * denotes
significant differences with p-value≤ 0.05. To perform the test, the IMU
locations were sorted incrementally according to their mean and median
accuracy, as shown in the figure. Consequently, it was only necessary
to test adjacent conditions.

The optimal IMU locations of the different IMU numbers,
concerning the vGRF estimation of the right leg during double-
leg drop landings, can be seen in Fig. 10. When only one
IMU was used in drop landing estimation, its best location for
getting high accuracy was on the chest. To get the best median
accuracy of a leg’s vGRF estimation, four IMUs placed on
the chest and the leg’s thigh, shank, and foot were enough.
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Number of IMU

Mean R2

Mean RMSE (BW)

Mean rRMSE

IMU locations

Median R2

1

0.82 (0.11)

0.09 (0.03)

0.20 (0.07)

0.85

2

0.21 (0.09)

0.81 (0.15)

0.09 (0.04)

0.87

3

0.09 (0.03)

0.81 (0.11)

0.21 (0.07)

0.84

4

0.82 (0.13)

0.20 (0.08)

0.09 (0.03)

0.87

5

0.81 (0.12)

0.21 (0.08)

0.09 (0.03)

0.85

6

0.80 (0.17)

0.21 (0.09)

0.09 (0.04)

0.87

7

0.82 (0.13)

0.20 (0.08)

0.09 (0.03)

0.86

8

0.86 (0.07)

0.18 (0.06)

0.08 (0.02)

0.87

C (chest)

W (waist)

IMU  configuration priority 123 4 56 8 7

Fig. 10. The statistical estimation accuracy of the right leg’s vGRF during double-leg drop landings under the model with one to eight optimally-
placed IMUs. The IMU configuration priority provided suggestions for IMU configuration. The estimation variable is the vGRF during double-leg drop
landings. BW represents body weight of subjects

The four IMUs enabled the model to have the same median
accuracy as the eight IMUs except for the accuracy of the
four IMUs having a relatively large deviation. From the aspect
of the mean accuracy, the model with eight IMUs showed
the highest accuracy and had the lowest RMSE and rRMSE.
In short, the strategy of configuring the IMUs is that using
all eight IMUs if there are enough IMUs, otherwise utilizing
only four IMUs placed on the chest and the leg’s foot, shank,
and thigh (Fig. 10). We introduced IMU configuration priority
to assess the IMU configuration strategy. IMU configuration
strategies that exhibit high average estimation accuracy and
low variance were assigned higher priority. In practical appli-
cations, these high-priority strategies should be selected first.

D. Comparison with acceleration-similarity and linear
regression models

We compared the proposed method (modular LSTM model)
with two existing approaches: acceleration-similarity model (a
type of physical model) and linear regression model (a type
of machine learning model). For the acceleration-similarity
model, the tibial acceleration that measured by a wearable
IMU placed on the shank was used to estimate the vGRF via
a linear transfer. As an example, the acceleration of the IMU
on the right shank was used to predict the right leg vGRF. The
acceleration-similarity model can be expressed as:

Fv = w1 ·Ax + w2 ·Ay + w3 ·Az + b (2)

where Fv represents the estimated vGRF, Ax,y,z are the tibial
accelerations along with its three directions. w1,2,3 and b are
scaling and offset parameters whose values were calculated by
a regression algorithm3.

For the linear regression model, we referred to Chaaban
et al. [25] who elaborated on features extracted from 3D
accelerations and 3D angular velocities of two IMUs that
were placed on the thigh and shank. The features were fed
into a stepwise linear regression model to estimate the target
variables. The features includes the maximum/minimum val-
ues of acceleration and angular velocities and their statistical

3The implementation of the acceleration-similarity model can be found
at https://gitlab.com/sunzhon/realtime_drop_landing_
estimation.git.

indexes. A leave-one-out cross-validation was performed on
the dataset that was split into 10 folds. The model was trained
on 9 folds and tested on the remaining fold and repeated
this process across each fold. A paired t-test was used to
determine if the mean R2 of the modular LSTM model was
significantly higher than that of the acceleration-similarity and
linear regression models (Fig. 11). The results showed that
the modular LSTM model outperformed the linear regression
model in KEM estimation and the acceleration-similarity in
vGRF estimation.

*
*

*

Modular LSTM
model

Fig. 11. Estimation accuracy comparison of our proposed method
(modular LSTM model) with other two existing methods: acceleration-
similarity [12] and linear regression model [25]. Note that the
acceleration-similarity model was only able to estimate vGRF using our
collected IMU data, while the accuracy of the linear regression model
comes from [25].

IV. DISCUSSION

This work proposed a modular LSTM-based model for real-
time estimating the vGRF and KEM during drop landing tasks.
We investigated the model features including model complex-
ity using LSTM unit number and applicability for different
IMU configurations and target variables. The evaluation results
demonstrated that the model is modular which can be set to
estimate different variables and be employed in single- and
double-leg drop landings. In addition, the model has low time-
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complexity and can perform the estimation in real time to
process the IMU data at 100 Hz.

A. Modularity and real-time estimation
To handle the specific characteristics, larger impact,

short-term, and non-period of drop landing, the proposed
model has two features, modularity and real time, which are
different from the existing estimation models [1], [20]–[22],
[24]. First, the model is modular and can be flexibly set to
be applied in different estimation applications. The existing
research utilized a large and complex neural network with
fixed multiple output channels to predict multiple target
variables [24]–[26]. Instead, this work utilized several
identical small neural networks to flexibly configure the
estimation model as needed (Fig. 1). The model can output
more variables by adding and training more sub-networks.
We have collected the necessary dataset for training the
model to predict the lower extremity biomechanics of drop
landing, including 3D angles and moments of the ankle,
knee, and hip joints. The dataset and code can be accessed at
https://gitlab.com/sunzhon/realtime_drop_
landing_estimation.git. The feature allows the
model to be a flexible estimation module for different in-filed
applications, such as ACL risk factor screening [4], assistive
device monitoring and control [9], [35], since they may
require different estimations. The modularity enables the
model to have a small size and to require relatively low
computation. Second, the model can run in real time. The
model was designed to use only the current and a few history
IMU data (three frames) so that the model ran online with
less computation and time-saving, thereby achieving real-time
estimation.

The proposed model, using eight IMUs, can update at a fre-
quency of 100 Hz in real-time applications. In the experiments,
the eight IMUs had a sampling frequency of 100 Hz and sent
their data to a computer without package loss simultaneously.
Also, the execution time per frame of estimation could be
less than 10 ms on a personal computer. From the aspect of
delay, considering the time delay in the data collection and
transport of the eight IMUs, the estimation had a maximum
20 ms delay (the time cost of a frame of data communication
and model computation). Although the delay is large, it would
be acceptable for real-time application because there is more
than 20 ms between two successive landings.

During a drop landing task, humans may not be able to make
adjustments in real time (within a short period, such as 10 ms)
due to humans’ physical and sensory limitations. However,
real-time estimation of biomechanical variables can still be
important for clinicians and researchers to identify potentially
harmful landing loads that can lead to injury and develop
effective injury prevention and rehabilitation strategies. Sub-
jects can receive biofeedback to recognize their landing status
online, which can help them adjust their landing technique
in consecutive trials. Also, although further validation of the
estimation accuracy and reliability is needed before applying
the proposed method in assistive devices or artificial limbs,
efforts in this work were made to pave the way toward to
practical applications.

B. Adaptability

The proposed model with the optimal LSTM unit number
adapts to the different IMU configurations. The complexity
and mapping capability of the model are determined by the
LSTM unit number (Ln, Fig. 1) that plays a crucial role in
modeling. A large Ln value can improve the capability of the
model for explaining the IMU data, but increase the model
complexity, training time, and possibility of overfitting. To find
proper Ln value, we used grid search to explore the proper
LSTM unit number under the different IMU configurations
(Fig. 6). The results indicate that the optimal LSTM unit
numbers of the model under the different IMU configurations
are similar. This suggests that the proposed model with the
optimal LSTM unit number under an IMU configuration will
also be good on other IMU configurations. Additionally, the
model can also adapt to the double-leg drop landings with the
different toe directions since the training dataset of the model
contained varied toe directions from toe-in to toe-out (Fig. 3
(c)).

C. IMU configurations

IMU configurations, including IMU numbers and locations
on the subject, significantly influence the model estimation
accuracy during single- and double-leg drop landing tasks.
Unlike the conclusion that a single shank-worn IMU caused
excellent accuracy of loading rate estimation during running
in [15], multiple IMUs could enable the proposed machine
learning model to exhibit better estimation accuracy during
drop landings (Fig. 8). Specifically, unlike the best double-leg
drop landing estimations with only four or five IMUs, during
single-leg drop landings the best vGRF and KEM estimations
of a leg relay on the IMUs on another leg. The distinction
is probably because of the specific characteristics of drop
landings: large, non-periodic, and short-term impact, so the
model needs multiple segments’ motion states measured by
IMUs to achieve the best fit. Besides, the proposed model with
different locations of an IMU showed significantly different
estimation accuracy. This indicates that the segment motion
states have different influences on the target variables (i.e.,
the vGRF and KEM). The IMU placed on the chest enabled
the model to show the highest accuracy, possibly because
the chest has meaningful changes of motion state and the
chest (or trunk) flexion angles also affect the lower extremity
biomechanics in landings [6], [36].

D. Estimation accuracy

In this work, we used accuracy distribution to assess the
proposed model (Figs. 8 and 10) because the model test results
have relatively large deviations in the massive test times (431
double-leg tests and 150 single-leg tests) and several outliers
(The test results with R2 < 0.4). Typically, the mean and
standard deviation of the RMSE, rRMSE, and correlation
coefficient (e.g., R2) under k-fold cross-validation tests are
used to assess machine learning models [15], [31], [37]–[39].
The statistical metrics can reflect the average performance
of the models and are practical for performance comparison
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between different models [31] or a model under different
hyper parameter values [26]. However, it is not intuitive to
reveal the performance distribution of a model via cross-
validation test results, especially when the test results have
large deviations and outliers. One outlier, such as a negative
R2 value, would severely debase the average R2 and offset
the statistical R2 values. Thus, outliers should be excluded
from the performance assessment and discussed individually.
The outliers may suffer from accidents during the experimental
testing, such as the bandage of the IMU becoming loose after
intense drop landings, thereby changing the IMU positions
and orientations. It was verified that the IMU positions and
orientations significantly influence the accuracy of the vGRF
estimation [31]. A possible solution for this is to use data
augmentation techniques to induce IMU position and orienta-
tion errors and build a robust dataset for model training [40],
[40]. After excluding outliers, it was found that the vGRF
estimation achieved outstanding performance during single-
leg drop landing when using the model with optimal IMU
configurations. Half of the trials had an accuracy of more than
0.93 (RMSE and rRMSE were less than 0.21 BW and 0.06,
respectively), and a quarter of the trials had an accuracy of
about 0.96 (RMSE and rRMSE were less than 0.17 BW and
0.05, respectively) (Table I).

The proposed modular LSTM model outperformed the other
two drop landing estimation models: acceleration-similarity
and linear regression. Greenhalgh et al. [12] explored that
the peak instantaneous vertical loading rates and peak tibial
acceleration have a moderate Pearson correlation (r = 0.469).
Tibial acceleration has been used to estimate the loading rate,
in which the correlation coefficient is around 0.44 − 0.66
[15]. We utilized the tibial acceleration to estimate the vGRF
profile of a landing period. The correlation coefficient (R2 =
0.45± 0.04) is similar to the current results. The accuracy of
the accelerations-similarity model is relatively low compared
to the accuracy of the machine learning models (linear regres-
sion and modular LSTM models). Highly accurate estimation
is necessary for the applications of retraining programs of
intervention [10]. Chaaban et al. [25] used elaborated features
extracted from IMU data and a linear regression model to
estimate the vGRF and KEM during landing tasks. Their
vGRF and KEM estimation accuracy (R2) are 0.83 ± 0.01
and 0.64 ± 0.01, respectively. Although the vGRF estimate
accuracy is promising, the KEM estimation accuracy is signifi-
cantly less than that of the modular LSTM model (0.84±0.12).
This is because LSTM can handle the nonlinear relationship
between IMU data (accelerations and angular velocities) and
the KEM.

From the perspective of estimation errors, our estimations
yielded relatively high RMSE values. The RMSE (mean±SD)
of the vGRF (KEM) during single- and double-leg drop
landings were 0.25±0.13 BW and 0.18±0.06 BW (0.54±0.18
BW·BH and 0.38 ± 0.1 BW·BH), respectively (Table I).
In a prior study [25], the mean RMSE of the peak vGRF
(KEM) during double-leg landings was reported to be 0.21
BW (0.027 BW·BH). It suggested that their estimation results
were acceptable since the RMSE values were smaller than
clinical differences (0.24 BW and 0.035BW·BH). Here, the

clinical difference indicates the vGRF or KEM difference
between subjects with and without ACL reconstruction. Our
model was developed to estimate the entire profile of the target
variables during a drop landing period, in which the errors of
the profile estimation were larger than the clinical difference.
Therefore, future work should also aim to reduce the RMSE
values to meet the requirements for applications of peak value
estimation.

Lipps et al. [41] reported that the human knee could only
withstand a load of about 4 BW within a short period before
the ACL failed. The estimated vGRFs in our study were below
the risky threshold of 4 BW. Lin et al. [42] performed a
computer simulation study to compare lower extremity kinetics
between trials with and without non-contact ACL injuries.
They found that the difference in mean vGRF between injured
and uninjured male subjects was 0.95 BW. In our study, the
RMSE of the vGRF estimated by our model during single- and
double-leg drop landings were 0.25±0.13 BW and 0.18±0.06
BW, respectively (Table I). The 95% limits of agreement (LoA,
mean-2SD ∼ mean+2SD) between the estimated vGRFs and
their ground truths were −0.01 ∼ 0.51 BW and 0.06 ∼ 0.3
BW, respectively. The maximum errors of the 95% LoA were
observed to be 0.51 BW and 0.3 BW for single- and double-
leg drop landings, respectively. The maximum estimation
errors were less than 0.95 BW. Therefore, if the difference in
estimated vGRFs between two trials exceeds 0.95+ 0.51 BW
during double-leg drop landings, the trial with a higher vGRF
is likely to be associated with injury. Hence, there is a high
probability that the estimated vGRFs can distinguish between
injured and uninjured trials in the situation. It is important to
note that the estimation accuracy is not enough to distinguish
any landing trials.

E. Limitations

These promising results should be interpreted in the context
of several limitations associated with the study. First, this
work only explored the estimation of the vGRF and KEM
without considering the other dimensions: anterior-posterior
and medio-lateral GRFs, knee joint abduction moments, and
knee joint internal rotation moments. Estimating the lateral
components of the GRF is a critical aspect when using a
single-IMU approach [43]. To generalize the estimation model
in more variables, the proposed modular LSTM model should
be trained to predict the different dimensions of a variable in
future work. Second, the model has relatively large estimation
errors of the peak values (Fig. 5). This is because the variables
have abrupt changes in peak points, making it relatively
difficult to map the peak values than other parts. Accurately
estimating the peak values is a pivot for the ACL injury
risk factor assessment because the peak values normally are
ACL injury risk factors. Therefore, in future work, we plan to
reduce the peak value estimation errors by adding constricted
conditions, such as giving higher weights to the peak value
loss when training the model and setting the peak value range
for the estimation. Last, the dataset was collected from male
subjects without musculoskeletal disease history. It is unclear
whether the model trained by the dataset can still be valid
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on female subjects as well as individuals experiencing ACL
reconstruction. For instance, athletes who have experienced
ACL reconstruction need practical ACL risk assessment more
since functional testing is needed to determine if a patient is
ready to return to sports [44]. To extend the applicability of the
proposed model, collecting dataset from different populations
are needed in the following study. Apart from varied land-
ing manners (toe direction), the experiment settings (landing
height and distance, Fig. 3 (a)) also influence the KEM of the
landings. To extend the generalization of the model in different
landing height and distance, the subsequent work is to collect
the dataset and assess the model under the different experiment
settings.

V. CONCLUSION

This work proposed a modular LSTM-based model for
real-time estimating the vGRF and KEM during single- and
double-leg drop landings. The model has a drop landing
event detection module for online identifying the ROI of the
drop landing period, a time-window buffer for organizing
and transferring IMU data, and four identical small-sized
deep neural networks for mapping the extracted IMU data
to the vGRF and KEM. The model has optimally-selected
IMU configurations and LSTM unit numbers. Also, the model
is modular in that it can be configured to estimate needed
variables by activating its corresponding neural networks. This
work, to the best of our knowledge, is the first time to
investigate the real-time estimation of the vGRF and KEM
during single- and double-leg drop landing tasks. This work
provides an in-field and portable method to real-time quantify
and monitor the vGRF and KEM during drop landings, which
would contribute to widespread clinical tests for non-contact
ACL injury-risk screening, evaluation of training interventions
in daily-life sport, and active control of knee assistive devices.

APPENDIXES

TABLE II
ESTIMATION PERFORMANCE OF THE RIGHT LEG FOR THE VGRF AND

KEM WITHOUT OPTIMIZED IMU CONFIGURATIONS DURING SINGLE-
AND DOUBLE-LEG DROP LANDINGS. THE UNITS OF RMSE FOR VGRF

AND KEM WERE BW AND BW · BH, RESPECTIVELY.

Variables Metrics Mean Min 25% 50% 75% Max

R2 0.86± 0.12 0.30 0.85 0.91 0.94 0.98
Single-leg

vGRF rRMSE 0.08± 0.03 0.03 0.06 0.07 0.09 0.20

RMSE 0.28± 0.13 0.11 0.20 0.24 0.32 0.81
R2 0.81± 0.14 0.20 0.75 0.86 0.91 0.98

Single-leg
KEM rRMSE 0.11± 0.04 0.04 0.08 0.11 0.13 0.25

RMSE 0.58± 0.18 0.20 0.45 0.54 0.70 1.23
R2 0.79± 0.14 0.20 0.71 0.83 0.90 0.99

Double-leg
vGRF rRMSE 0.11± 0.06 0.03 0.07 0.09 0.13 0.37

RMSE 0.28± 0.07 0.06 0.22 0.27 0.32 0.57
R2 0.82± 0.14 0.20 0.75 0.86 0.92 0.98

Double-leg
KEM rRMSE 0.11± 0.04 0.04 0.08 0.10 0.13 0.28

RMSE 0.40± 0.11 0.16 0.32 0.40 0.47 0.79
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